Ways to Reduce Arc Flash Energy

Robert E. Fuhr, PE PowerStudies, Inc.

Arc Flash

Produces

- Excessive Noise
- Pressure Wave
- Extreme Heat
- Toxic Gases, Vapors
- Flying Molted Metal Particles

Arc Flash

Produces Energy in the form of

- Thermal
- Radiation
- Chemical
- Mechanical
- Electrical

Arc Flash Hazard Analysis – Key Steps

- Use NFPA 70E* Tables, IEEE 1584, or Lee Equations to Determine
 - Arc Flash hazard boundary
 - Incident energy levels @ a working distance
 - *Arc Flash PPE Category

*Use with Extreme Caution!!!!

Arc Flash Hazard Analysis Key Steps

- NFPA 70E Tables 130.7(C)(15)(a)* or 130.5(G) to determine
 - Arc Flash Hazard Category
 - Required PPE

Arc Flash Hazard Analysis Key Steps

Create Arc Flash Warning Labels showing the details.

11 Ft 5 In	Flash Hazard Boundary
33.0	cal/cm² Flash Hazard at 1 Ft 6 In
	Arc Rated Clothing Required (See NFPA 70E- 2018 Table 130.5(G) for additional PPE)
208 VAC	Shock Hazard when cover is removed
00	Glove Class
3 Ft 6 In	Limited Approach (Fixed Circuit)
1 Ft 0 In	Restricted Approach

11/15/2018 IEEE 1584-2018 & NFPA 70E-2018 Equipment: SWBD MSB2 Device:

MSB2 MAIN

Scenario 2 - 50% UTILITY Max Fault Current: 20.0 kA Study Performed By Power Studies, Inc. (253) 639-8535

IEEE 1584-2018 Guide for Performing Arc-Flash Hazard Calculations

- Provides the steps and equations
- Arc Flash Energy Equations Require:
 - Equipment Bolted
 Fault Currents
 - Arcing Fault (AF) Current
 - Upstream Protective
 Device Clearing
 Times

Arc Flash Energy Level

Also Dependent Upon

- Operating Voltage
- Gap Length
- Type of Grounding
- Enclosure Type (Box or Open Air)
- Enclosure Size
- Electrode Configuration

Arc Flash Energy Level

- Greatest Effect on Calculations
 - **1.** Time Upstream Device Operates
 - 2. Working Distance
 - 3. Available fault current

Distance vs. Incident Energy (Time Constant @ 0.5 Sec & Fault = 60 kA)

Reduce Energy Level to Zero

De-energize the equipment!
 Put the equipment in an electrically safe work condition.

Next Best Solution

- Increase the Work Distances
 Lower the Fault Current
 Reduce Device
 - Clearing (Trip) Times

Design, Modifications, Retrofits, & Work Procedures

Reduce the fault current.

Clear the arcing fault as quickly as possible without sacrificing coordination.

Reduce Fault Current

 Use Several Smaller Transformers / Substations vs. One Large One
 Current Limiting Reactors

Fuses

Operates Extremely Fast (If in current) limiting range.) Reduces Current and Energy levels Change Fuse Types – Faster Clearing Curves - CL vs. Expulsion – Different types Reduce Fuse Ampere Size

Fused vs. Un-Fused Disconnect Switches

Fuse TCC

TIME IN SECONDS

Circuit Breakers

Current Limiting Breakers – Reduces currents and energy levels

Circuit Breakers

- Specify breakers with Solid State Trip Units
 - Long, Short & Instantaneous, Arc Flash Reduction Mode (If Possible)
 - Set Short Time PU & Delay as low as possible.

Thermal Magnetic Trip Unit Thermal Unit is Fixed Instantaneous - Fixed

Thermal Magnetic Breaker

Solid State Trip Unit

 Varies for each Trip Unit!
 Some Functions are Not Adjustable!

TIME IN SECONDS

Solid State Trip

SQ D NW 40H
4000 Amp
Micrologic

Circuit Breakers

Use Same Settings for:

 Main and Bus Tie
 Primary & Secondary Devices

 Use Zone Interlocking between Mains and Feeders.

Circuit Breakers & Switchgear

Flash Sensing Relays
Differential Protection
Arc Flash Venting (Arc Resistant) Switchgear

Relays

Change Relay Types and Curves Solid State Programmable Curve Shapes (Definite or Mod Inverse) Reduce MV Feeder Relay Pickup

Modification of Work Procedures

 Eliminate Paralleling of Transformers
 Eliminate work between Transformer Secondary and Main Breaker.
 Implement Faster Trip Times for Maintenance Work

 Circuit Breakers

- Arc Flash Reduction Mode Switches
- Relays

Modification of Work Procedures

Use Infrared Windows

Modification of Work Procedures

Work at a Greater Distance

Remote Breaker Racking

Summary

Reduce Arc Flash Energy by:

- Increasing the Worker Distance
- Reducing Fault Currents
- Decreasing the Trip Times

Need more Information

www.powerstudies.com

- Articles
- Links
- Specifications for Power System Studies
 - Short Circuit
 - Protective Device Coordination
 - Arc Flash Hazard

Who are we?

 Electrical Engineering Consulting Firm
 We Specialize in performing Power System Studies
 90% of our business is in performing Power System Studies

Where are we located?

Our office is located in Maple Valley, WA.
Near Seattle